- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Lessin, Gennadi (2)
-
Benway, Heather M (1)
-
Brady, Damian C (1)
-
Brown, Ian J. (1)
-
Burdige, David (1)
-
Cecchetto, Marta M (1)
-
Elegbede, Isa (1)
-
Evans, Natalya (1)
-
Frenzel, Alexandra (1)
-
Fulweiler, Robinson W (1)
-
Gillen, Kayla (1)
-
Herbert, Lisa C (1)
-
Hirsh, Heidi K (1)
-
Jayakumar, Amal (1)
-
Levin, Lisa (1)
-
Long, Matthew H (1)
-
Luo, Jessica Y (1)
-
Maiti, Kanchan (1)
-
Malkin, Sairah (1)
-
Mincks, Sarah L (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Nitrous oxide (N 2 O) is important to the global radiative budget of the atmosphere and contributes to the depletion of stratospheric ozone. Globally the ocean represents a large net flux of N 2 O to the atmosphere but the direction of this flux varies regionally. Our understanding of N 2 O production and consumption processes in the ocean remains incomplete. Traditional understanding tells us that anaerobic denitrification, the reduction of NO 3 − to N 2 with N 2 O as an intermediate step, is the sole biological means of reducing N 2 O, a process known to occur in anoxic environments only. Here we present experimental evidence of N 2 O removal under fully oxygenated conditions, coupled with observations of bacterial communities with novel, atypical gene sequences for N 2 O reduction. The focus of this work was on the high latitude Atlantic Ocean where we show bacterial consumption sufficient to account for oceanic N 2 O depletion and the occurrence of regional sinks for atmospheric N 2 O.more » « less
-
Schultz, Cristina; Luo, Jessica Y; Brady, Damian C; Fulweiler, Robinson W; Long, Matthew H; Petrik, Colleen M; Testa, Jeremy M; Benway, Heather M; Burdige, David; Cecchetto, Marta M; et al (, Global Biogeochemical Cycles)The ocean plays a major role in controlling atmospheric carbon at decadal to millennial timescales, with benthic carbon representing the only geologic‐scale storage of oceanic carbon. Despite its importance, detailed benthic ocean observations are limited and representation of the benthic carbon cycle in ocean and Earth system models (ESMs) is mostly empirical with little prognostic capacity, which hinders our ability to properly understand the long‐term evolution of the carbon cycle and climate change‐related feedbacks. The Benthic Ecosystem and Carbon Synthesis (BECS) working group, with the support of the US Ocean Carbon & Biogeochemistry Program (OCB), identified key challenges limiting our understanding of benthic systems, opportunities to act on these challenges, and pathways to increase the representation of these systems in global modeling and observational efforts. We propose a set of priorities to advance mechanistic understanding and better quantify the importance of the benthos: (a) implementing a model intercomparison exercise with existing benthic models to support future model development, (b) data synthesis to inform both model parameterizations and future observations, (c) increased deployment of platforms and technologies in support of in situ benthic monitoring (e.g., from benchtop to field mesocosm), and (d) global coordination of a benthic observing program (“GEOSed”) to fill large regional data gaps and evaluate the mechanistic understanding of benthic processes acquired throughout the previous steps. Addressing these priorities will help inform solutions to both global and regional resource management and climate adaptation strategies.more » « lessFree, publicly-accessible full text available December 15, 2026
An official website of the United States government
